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ABSTRACT
Let Z C E? be a d-dimensional zonoid, where d > 3. Boltjanskii and Soltan
recently proved that if Z is not a parallelotope, then Z can be illuminated
by 3-2%-2 points disjoint from Z. In the present paper we prove a related

result. Namely, we show that if d + 1 = 2P, then Z can be illuminated by
2%

pFr lines lying outside Z.

1. Introduction

Let E¢ denote a d-dimensional Euclidean space, where d > 1. A convex body
in E? is a compact convex set with non-empty interior. Let K C E? be a
convex body. We say that a point L € E4\ K illuminates the boundary point
P of K if the open ray emanating from P having direction vector LP has a
non-empty intersection with the interior of K. Furthermore, we say that the
points {L1, Ly, ...,L,} C B¢ N\ K illuminate K if every boundary point of K is
illuminated by at least one of the points Ly, Ls, ..., L,. Finally, let Ii(K) be the

smallest number of points lying outside K which illuminate K. A zonotope of
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E? is a convex polytope that represents the vector sum of finitely many closed
segments in EZ. A compact convex set in E? is called a zonoid if it is the limit
(in the sense of the Hausdorff metric) of some convergent sequence of zonotopes
of E? [6]. Boltjanskii and Soltan [5] recently proved the following nice theorem
on zonoids. If the convex body Z C E? is a zonoid other than a parallelotope,
then I(Z) < 3-2972, where d > 3. In the present paper we prove a related result
on zonoids.

The following general illumination problem was raised and partially discussed
in (1], [2], [3] and [4]. Let K G E? be a d-dimensional closed convex set, where
d > 1. We say that the affine subspace L C E? N\ K of dimension 0 < dim L <
d — 1 illuminates the boundary point P of K if there exists a point of L which
iluminates P. Furthermore, we say that the affine subspaces Ly, Lq,...,Ln C
E¢~ K illuminate K if every boundary point of K is illuminated by at least
one of the affine subspaces L, Lo,...,L,. Finally, let I;(K) be the smallest
cardinality of affine subspaces of dimension [ lying in E? ~ K which illuminate
K, where 0 <1< d — 1. Obviously,

1< Iiy(K) < Li—o(K) < - < Ii(K) < Io(K).

We prove the following

THEOREM: Let Z C E? be a d-dimensional zonoid and C C E? be a
d-dimensional parallelotope. If d + 1 = 2P, then
2P —p—1 2¢
h(Z) < B(0) =27 = 2
Remark: The proof of Lemma 1 below shows that the pure combinatorial equiv-
alent of I;(C) = 2¢/d + 1 is the existence of a perfect covering of the vertices of
the edge graph of the d—dimensional parallelotope C C E? by 2¢/d + 1 shortest
paths of length d, where d+ 1 =27 and p > 2.

where p > 2.

Generalizing the question of the Theorem we pose the following

CoNJECTURE: Let K C E? be a convex body, where d > 2. Then

)

A d-dimensional closed convex set K g E¢ is called almost bounded if there

exists a d-dimensional ball of E¢ which intersects every supporting hyperplane
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of K, where d > 1. If K is almost bounded, then let L denote the closed
convex cone which is the union of closed half-lines emanating from an interior
point, say, O of K and lying in K. Moreover, let Pr; : E¢ — L' denote
the orthogonal projection of E¢ onto the affine subspace O € L* which is the
orthogonal complement of the affine hull of L in E¢ and let Ij[cl(Pr (K))] denote
the corresponding illumination number of the closure cl(Pr(K)) of Pr (K) in
L+, where 0 <1< d—1. If dim Lt < I, then we take [j[cl(Pr, (K))] = 1. The
following theorem was proved in [4]. Let K G E? be a d—dimensional almost
bounded closed convex set and let 0 <1 < d~1. Then cl(Pr;(K)) is a compact
convex set of dimension dim L+ and I}(K) < Ij[cl(Pr(K))] < +00. Combining

this result with our Theorem one can get the following

COROLLARY: Let K g E? be a d-dimensional almost bounded closed convex set
and assume that cl{(Pr;(K)) is a zonoid with dim [c(Pr1(K))] +1 = 2?. Then
L(K) < 2% -1,

2. Proof of Theorem

First we verify the following special case.

LEMMA 1: Let C4 C E? be a d-dimensional cube and assume that d + 1 = 27,
where p > 2. Then

2d
d+1

Proof: Without loss of generality we may assume that the vertex set of Cy is

L(Co) =277 =

the vector space [GF(2)]?. In the edge graph of C4 two vertices z and y of Cy
are connected by an edge if and only if z+y has exactly one non-zero component.
Let .
def i d
e = (0,...,0,1,0,...,0) € [GF(2)]",
where 1 <1 € d. It is easy to see that if v is a vertex of Cg, then the vertices
v,v+ €1, v+ €1 +e2,...,0+ €1 + ez + - + ¢4 can be illuminated by a line of
E? ~\ C4. Thus, in order to show that

2d
L(Cy) < Y whered+1=2P and p > 2

it is sufficient to prove that there are vertices vy,v2,...,v, of Cq with n =
22°=p—1 guch that the paths

{vi,vi +e1,vi+e1+e,...,viter+er+---+ea}
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cover all vertices of Cy, where 1 < ¢ < n. The proof is by induction on p. As the
claim is obviously true for p = 2 assume that for d' = 2P~! — 1 and p > 3 there
exists a set {v],v},..., v} of n' = 22"""=P vertices of Cy such that the paths

! ! [} ! [ [} ] ’ ! ]
{vi,vi + €}, vi+e) +eh,...,vi+ey+ea+--+eg)

cover all vertices of Cy, where

[-%

¢, % 0,...,0,1,0,...,00 € [GF@)¥ and 1<j<d.

Then take the set
{(z,0,z +v}) € [GFQ2))|z € [GF(2))* and 1 <i < n'}

of 24 . ! = 9277119277 —p — 92°—P—1 _ p vertices of C4. Now we have to
show that the above n paths of the edge graph of Cy4 starting from the vertices

(z,0,z + v!) are pairwise disjoint. Thus, assume that
] m
(1 @0,z +v)+ Y er=(0,y+v))+ ) e
k=1 k=1

for some z,y € [GF(2)]*,1<4,j <n', 1 <I,m < d. Without loss of generality

we may assume that [ < m. From (1) we get

d'+1 L ! m I+1 m
(2) (z+y, O ,a:+y+v,~+v]-)=Zek+Zek=(0,...,0, 1,...,1,0,...,0).
k=1 k=1

Thus, either d +1 < I <morl <m < d'. In the first case we easily get that
z =y and
' I m
d'+1
0,..., 0 ,v§+v;)=zek+ ek
k=1 k=1

1.e.
1 m
d'+1 d'+1
(0,..., 0,U£)+Zek:(0,"'a O,U‘;)‘f‘zek
k=1 k=1

which then by induction implies that ¢ = j and | = m. In the second case we

get that o +y = Yty ek + Yope, ¢k and o +y = v} + v}. Hence, v} + v} =
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ko e+ T, €}, that is vl + ke € = v + Y 4-, €}, which then again by
induction implies that ¢ = j, | = m and so z = y. This completes the proof of

d

<
L(Cay) < d+1

ford+1=2% and p > 2.

Finally, it is easy to see that a line of E? \ C4 can illuminate at most d + 1
vertices of C?. Thus, ;
2

d = —
I](C ) - d + 1 9
indeed. ]

As the illumination numbers are affine invariants Lemma 1 extends to d-
dimenstonal parallelotopes as well. Now we are in a position to prove the claim

of the Theorem for zonotopes.

LEMMA 2: Let P C E? be a d-dimensional zonotope and assume that d+1 = 27,
where p > 2. Then

od
d+1
Proof: Recall the following separation lemma of (1] and [2]. Let L C E¢ \{0}
be an affine subspace of dimension 0 <! < d — 1, where O denotes the origin of
E?. Then let

L(P) <271 =

I =n{HqlHq = {X € EY|(0X,00) =1} and Q € L},
where ( , ) denotes the usual inner product of E?. It is easy to see that dim L =
d — 1 — 1. Then the separation lemma can be formulated as follows.

PROPOSITION: Let K be a convex body of E? that contains the origin O as an
interior point and let F,, be the smallest dimensional face of K which contains
the boundary point P of K, where d > 1. Then the affine subspace L C E¢~ K
of dimension 0 < dim L < d — 1 illuminates P if and only if there exists Q € L
such that the hyperplane

Ho={X ¢EY(0X,0Q)=1}> L
strictly separates O from the face

Ft={X eK*|(OX,07) =1 forall Y € F,,}
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of the polar convex body
K* = {X ¢ E{(0X,07) <1 forall Y € K}.

Furthermore, I)(K) = n if and only if n is the smallest integer such that there
exist affine subspaces L1, L, . .., Ly, of E? of dimension d—1—1 with the property
that every face of the polar convex body K* can be strictly separated from
O by a hyperplane of E? which contains at least one of the affine subspaces
Ly,L,,...,L,.

Without loss of generality we may assume that the origin O of E¢ is the center
point of the d—dimensional zonotope P C E?. Let us consider the polar convex
polytope

P* = {X ¢ E{|(OX,07) <1forall Y € P}
of P. O is the center point of P* as well. Let S~ be a (d ~ 1)-dimensional
sphere centered at O which lies in the interior of P*. Then it is easy to prove
that the central projection of the faces of P* from O onto S¢~! is a tiling 7
of S$%=1 which can be obtained as a dissection of S¢~! by finitely many, say, n
(d — 2)-dimensional great spheres. The Proposition implies that it is sufficient
to prove that there are 2¢/d+1 (d — 2)-dimensional affine subspaces of E?
with the property that every face of 7 can be strictly separated from O by a
hyperplane of E? which contains at least one of the 2¢/d + 1 (d— 2)-dimensional
affine subspaces. It is clear that n > d and there are d affinely independent
(d — 2)-dimensional great spheres among the n ones such that the dissection 7!
of S471 generated by them is the central projection of the faces of a d-dimensional
affine crosspolytope C* of E¢ from the center point O onto S?-1, As the polar
convex body C of C* is a d-dimensional parallelotope i.e. an affine image of a
d-dimensional cube and as the affinity does not change the illumination number
I)(K) of any convex body K, Lemma 1 and the Proposition imply that there
exist da-_dl (d—2)-dimensional affine subspaces of E? with the property that every
face of the tiling 7! can be strictly separated from O by a hyperplane of E? which
contains at least one of the 2¢/d + 1 (d — 2)-dimensional affine subspaces. Then
it remains to observe the rather trivial fact that the same-2¢/d+1 (d — 2)-
dimensional affine subspaces of B? posses the property that every face of the
tiling 7 can be strictly separated from O by a hyperplane of E? which contains
at least one of the 2¢/d + 1 (d —2)-dimensional affine subspaces. This completes

the proof of Lemma 2. |
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The following two lemmas are due to Boltjanskii and Soltan (5] in case [ = 0.
As the proofs of the following slightly more general lemmas can be obtained as a
rather trivial extensions of Boltjanskii’s and Soltan’s methods we omit the details

here.

LEMMA 3: Let 0 <1< d—1 be integers. Then on the class of all convex bodies
in E¢ the function Ii(K) is upper semi continuous i.e. if the sequence of convex

bodies K;,Ka,...,K,,,... converges to K, and K is a convex body, then
II(K) > liril I((Km).

It is known that a compact convex set Z C E? is a zonoid if and only if (up
to a parallel translation) it represents the set of all points z(g) = fot g(3)¢'(s)ds,
where z = ¢(s), 0 < s < ¢, is the vector equation of some rectifiable curve in E¢
on which the parameter s is the length, and g runs through the set of measurable
functions satisfying the condition |g(s)] < % with 0 < s < t. Moreover, let
0 < 81 <82 <-+- < s <tbe points at which the derivative ¢'(s) exists and is
approximately continuous. Then the zonotope i.e. the vector sum of the & closed
intervals respectively parallel to the vectors ¢'(s1),¢'(s2),...,¢'(sk) is called a

tangential zonotope of the zonoid Z (see [5]).

LEMMA 4: Let Z C E? be a d-dimensional zonoid and P be a d-dimensional
tangential zonotope of it moreover, let 0 <1< d —1. Then I;,(Z) < I;(P).

According to a result of Baladze (see [5]) every d-dimensional zonoid Z C E¢
can be represented as the limit of some sequence of its d-dimensional tangential
zonotopes. This and Lemma 3 and 4 then imply that if Z C E¢ is a d-dimensional
zonoid and 0 < [ < d — 1, then there exists a sequence Py, P2,..., P, ... of its
d-dimensional tangential zonotopes such that I}(Z) = limy, oo [iI(Ps ). Thus,
Lemma 2 immediately yields that if d + 1 = 2P, where p > 2, then

2d
d+1

L(Z)= lm §L(Pn)< 22 -p=1 =

m—

This completes the proof of the Theorem. B
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