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A B S T R A C T  

Let Z C E d be a d-dimensional zonoid, where d > 3. Boltjanskii and Soltan 

recently proved that if Z is not a parallelotope, then Z can be illuminated 
by 3.2 d-2 points disjoint from Z. In the present paper we prove a related 
result. Namely, we show that if d + 1 = 2 p, then Z can be illuminated by 

2 d d+--'T lines lying outside Z. 

1. I n t r o d u c t i o n  

Let E d denote  a d -d imens iona l  Euc l idean  space,  where  d _> 1. A convex b o d y  

in E d is a compac t  convex set wi th  n o n - e m p t y  inter ior .  Let  K C E d be  a 

convex body.  We say t ha t  a po in t  L E E d "- K i l lumina tes  the  b o u n d a r y  po in t  

P of K if the  open ray  e m a n a t i n g  from P having  d i rec t ion  vec tor  ~ has a 

n o n - e m p t y  in tersec t ion  wi th  the  in te r io r  of  K .  Fu r the rmore ,  we say t ha t  the  

po in t s  {L1, L 2 , . . . ,  Ln} C E d \ K i l lumina te  K if every b o u n d a r y  po in t  of K is 

i l l umina ted  by  at  leas t  one of the  po in t s  L1, L 2 , . . . ,  L,,. F inal ly ,  let Io (K)  be the  

smal les t  number  of po in t s  ly ing  ou ts ide  K which i l l umina te  K .  A zono tope  of 
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E d is a convex polytope that represents the vector sum of finitely many closed 

segments in E d. A compact convex set in E ~ is called a zonoid if it is the limit 

(in the sense of the Hausdorff metric) of some convergent sequence of zonotopes 

of E d [6]. Boltjanskii and Soltan [5] recently proved the following nice theorem 

on zonoids. If the convex body Z C E d is a zonoid other than a parallelotope, 

then I0(Z) < 3.2 d-2, where d > 3. In the present paper we prove a related result 

on zonoids. 

The following general illumination problem was raised and partially discussed 

in [1], [2], [3] and [4]. Let K C E d be a d-dimensional closed convex set, where 

d > 1. We say that the affine subspace L C E ~t \ K of dimension 0 < dim L < 

d - 1 illuminates the boundary point P of K if there exists a point of L which 

illuminates P.  Furthermore, we say that the afl:ine subspaces L1, L 2 , . . . ,  Ln C 

E d "-- K illuminate K if every boundary point of K is illuminated by at least 

one of the affine subspaces L 1 , L 2 , . . . , L n .  Finally, let Iz(K) be the smallest 

cardinality of afflne subspaces of dimension l lying in E d \ K which illuminate 

K,  where 0 < l < d - 1. Obviously, 

1 < I d - l ( K )  _< Id-2(K)  _< ' "  _< I I (K)  _< Io(K).  

We prove the following 

THEOREM: Let Z C E d be a d-dimensional zonoid and C C E d be a 

d-dimensional parallelotope. I f  d + 1 = 2 p, then 

2 d 
I1(Z) < I i (C)  = 2 2p-p-1 - where p > 2. 

- d + l '  - 

Remark: The proof of Lemma 1 below shows that the pure combinatorial equiv- 

alent o f / 1 ( C )  = 2d/d + 1 is the existence of a perfect covering of the vertices of 

the edge graph of the d-dimensional  parallelotope (3 C E d by 2did + 1 shortest 

paths of length d, where d + 1 = 2 p and p > 2. 

Generalizing the question of the Theorem we pose the following 

CONJECTURE: Let K C E d be a convex body, where d > 2. Then 

[ 2d ] 
x,(g)  < 

A d-dimensional closed convex set K ~ E d is called almost bounded if there 

exists a d-dimensional ball of E d which intersects every supporting h y p e r p l ~ e  
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of K,  where d > 1. If K is almost bounded, then let L denote the closed 

convex cone which is the union of closed half-lines emanating from an interior 

point, say, O of K and lying in K.  Moreover, let P r ±  : E d --~ L ± denote 

the orthogonal projection of E d onto the affine subspace 0 E L ± which is the 

orthogonal complement of the affine hull of L in E d and let It[cl(Pr±(K))] denote 

the corresponding illumination number of the closure c l (P r± (K) )  of P r ± ( K )  in 

L 1, where 0 < l < d - 1. If dim L ± < l, then we take I i [c l (Pr±(K))]  = 1. The 

following theorem was proved in [4]. Let K C E d be a d-d imensional  almost 

bounded closed convex set and let 0 < l < d -  1. Then c l (P r± (K) )  is a compact 

convex set of dimension dim L l and I t (K)  < I i[c l (Pri(g))]  < +co. Combining 

this result with our Theorem one can get the following 

COROLLARY: Let K C E d be a d-dimensional almost bounded closed convex set 

and assume that c1(Pr i (K))  is a zonoid with dim [cl(Pri(K))] + 1 = 2 p. Then 

/ I ( K )  _< 2 2p-p- I .  

2. P r o o f  o f  T h e o r e m  

First we verify the following special case. 

LEMMA 1: Let Ca C E d be a d-dimensional cube and assume that d +  1 = 2 p, 

where p > 2. Then 
2 d 

I i ( C d )  = 2 ~ p - p - 1  = 
d + l "  

Proof." Without  loss of generality we may assume that  the vertex set of Cd is 

the vector space [GF(2)] d. In the edge graph of Ca two vertices x and y of Cd 

are connected by an edge if and only if x + y has exactly one non-zero component. 

Let 
def i 

ei = ( 0 , . . . , 0 , 1 , 0 , . . . , 0 )  e [GF(2)] d, 

where 1 < i < d. It is easy to see that  if v is a vertex of Cd, then the vertices 

V,V "~- e l , v  + e I 2f_ e 2 , . . .  , y  2i- e 1 + e 2 dr - - -  + ¢d c a n  be illuminated by a line of 

E d \ Cd. Thus, in order to show that  

2 d 
I I (Cd)  _< d + l '  where d + t 2P andp_> 2 

it is sufficient to prove that  there are vertices v l , v 2 , . . . , v n  of Cd with n = 

2 2p-p-1 such that  the paths 

{Vi, Vi q- Cl ,Vi  + el  + e 2 , . . .  ,vi  + el  -}- e2 4 - - "  4- Cd} 
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cover all vertices of C~, where 1 < i < n. The  proof is by induc t ion  on p. As the 

claim is obviously t rue for p = 2 assume tha t  for d r = 2 p-1 - 1 and  p > 3 there 
t I .. i nl  2 2p-t exists a set {v l ,  v2 , .  , v n, } of = -P vertices of Cd, such that  the pa ths  

! t edl {vi, v i +  ' ' ' ' ' + e ~ +  ' e l ,  l)i + e l  + e 2 , . . . ,  t~i e2 + " "  + } 

cover all vertices of Cd,, where 

' ~ ( 0 , .  ej . . , 0 , 1 , 0 , . . . , 0 )  E[GF(2)]  d' and l _ < j _ < d ' .  

T h e n  take the set 

{ ( z , 0 , z  +v~)  • [aF(2)ldl x • [GF(2)] ~' and 1 < i  < n'} 

of 2 d' • n ~ = 2 2p-t-1 • 2 2p-I-p = 2 2p-p-1 = n vertices of Cd. Now we have to 

show tha t  the above n pa ths  of the edge graph of Ca s tar t ing  from the vertices 

(x, 0, x + v~) are pairwise disjoint. Thus,  assume that  

(1) 

I m 

(~,0, • + ¢i) + ~ e~ = (y,0,y + v;) + ~],~ 
k = l  k = l  

for some x , y  • [GF(2)] d', 1 < i , j  < n ' ,  1 < l , m  < d. W i t hou t  loss of general i ty  

we may  assume tha t  I _< m. From (1) we get 

(2) (x + v, 
d' + l I m~ /+1 rn 

0 ,x+  . + ~ '  ' = ~ k + 2 5  = ( ° ,  ,0, 1 ,1,0, 0) y _  v i _  v j ,  ek . .  , . . . . . .  , 

k= l  k = l  

Thus ,  either d' + 1 < l < m or l < m _< d r. In the first case we easily get tha t  

x = y and  

d ' + l  I l m 

(0, . . . ,  0 ,v, + v; )= E ~ + Z ~k 
k = l  k= l  

i.e. 
d l+ l  l m 

(0 ,  , 0 ,V:)-~- ~ C k  ( 0 , . . . ,  d ' + l  . . . .  0 , v~) + ~k 
k=l  k= l  

which then  by induc t ion  implies tha t  i = j and  l = m. In  the second case we 

I m t t Hence, t t get tha t  z + y = ~ k = l  e~ + ~-~t=l e~ and z + y = v i + vj .  v i + Vj  = 
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E ~ = ,  el  + E ~ = ,  el ,  that  is v~ + E~= ,  e l  = v~ + Eke__, e I which then again by 

induction implies that i = j ,  l = m and so x = y. This completes the proof of 

2 d 
II(Cd) < ~ for d +  1 = 2 p and p > 2. 

Finally, it is easy to see that  a line of E a \ Cd can illuminate at most d + 1 

vertices of C d. Thus, 
2 a 

Z ' (cd)  = d +  1' 

indeed. | 

As the illumination numbers are affine invariants Lemma 1 extends to d- 

dimensional parallelotopes as well. Now we are in a position to prove the claim 

of the Theorem for zonotopes. 

LEMMA 2: Let P C E d be a d-dimensional zonotope and assume that d+ 1 = 2 p, 

where p >_ 2. Then 

! l (V)  _< 22p-p-I - 2d 
d + l "  

Proof: Recall the following separation lemma of [1] and [2]. Let L C E a \ { O }  

be an affine subspace of dimension 0 < l < d - 1, where O denotes the origin of 

E d. Then let 

L = N{HQII't Q ~- { X  E Edl(o---~,O----~) : 1} and Q E L}, 

where ( , ) denotes the usual inner product of E d. It is easy to see that dim L = 

d - l - 1. Then the separation lemma can be formulated as follows. 

PROPOSITION: Let K be a convex body o r E  d that contains the origin O as an 

interior point and let Fm be the smallest dimensional face of K which contains 

the boundary point P of K,  where d > 1. Then the a~ne  subspace L C E a \ K 

of dimension 0 < dim L < d - 1 illuminates P i f  and only i f  there exists Q E L 

such that the hyperplane 

H 0 = {X ~ EdI(O----~,O----0) = 1} ~ L 

strictly separates O from the face 

F,~ = {X E K*[(O---.-~, 0---12) = 1 for all Y e Fro} 



270 K. B E Z D E K  ET AL. Isr. J. Math. 

of the polar convex body 

K* = {X E Ed[(b-~, O-~) < 1 for all Y C K}. 

Furthermore, I i (K) = n i f  and only i f  n is the smallest integer such that there 

exist af~ne subspaces L1, L 2 , . . . ,  L,, o r E  d of dimension d - l -  1 with the property 

that every face of the polar convex body K* can be strictly separated from 

0 by a hyperplane of E d which contains at least one of the atone subspaces 

L 1 , L 2 , .  . .  ,Ln.  

Without loss of generality we may assume that the origin 0 of E ~ is the center 

point of the d-dimensionM zonotope P C E d. Let us consider the polar convex 

polytope 

P* = {X E EdI(o-x, b-~) < 1 for all Y E P} 

of P.  O is the center point of P* as well. Let S d-I be a (d - 1)-(limensional 

sphere centered at O which lies in the interior of P*. Then it is easy to prove 

that the central projection of the faces of P* from O onto S d-I is a tiling 7" 

of S d-1 which can be obtained as a dissection of S d-I by finitely many, say, n 

(d - 2)-dimensional great spheres. The Proposition implies that it is sufficient 

to prove that there are 2d/d+ 1 (d - 2)-dimensional affine subspaces of E d 

with the property that every face of 7" can be strictly separated from O by a 

hyperplane of E d which contains at least one of the 2did + 1 ( d -  2)-dimensional 

affine subspaces. It is clear that n :> d and there are d affinely independent 

(d - 2)-dimensional great spheres mnong the n ones such that the dissection T 1 

of S d-1 generated by them is the central projection of the faces of a d-dimensional 

affine crosspolytope C* of E a from the center point O onto S d-1. As the polar 

convex body C of C* is a d-dimensional parallelotope i.e. an affine image of a 

d-dimensional cube and as the affinity does not change the illumination number 

I I (K)  of any convex body K,  Lemma 1 and the Proposition imply that there 

2d ( d -  2)-dimensional affine subspaces of E d with the property that every exist 

face of the tiling 7"1 can be strictly separated from O by a hyperplane of E d which 

contains at least one of the 2did + 1 (d - 2)-dimensional afl:ine subspaces. Then 

it remains to observe the rather trivial fact that the smne-2d/d + 1 (d - 2)- 

dimensional affine subspaces of E d posses the property that every face of the 

tiling 7" can be strictly separated from O by a hyperplane of E d which contains 

at least one of the 2d/d + 1 ( d -  2)-dimensional affine subspaces. This completes 

the proof of Lemma 2. | 
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The following two lemmas are due to Boltjanskii and Soltan [5] in case l = 0. 

As the proofs of the following slightly more general lemmas can be obtained as a 

rather trivial extensions of Boltjanskii's and Soltan's methods we omit the details 

here. 

LEMMA 3: Let 0 < l < d -  1 be integers. Then on the class of  Ml convex bodies 

in E d the function I t (K)  is upper semi continuous i.e. i f  the sequence of  convex 

bodies K 1 , K 2 , . . .  , K m , . . .  converges to K,  and K is a convex body, then 

I t ( K )  >_ lim I t ( K i n ) .  
Kn ---) -~- O0  

It is known that a compact convex set Z C E d is a zonoid if and only if (up 
t I 

to a parallel translation) it represents the set of all points x(g) = f~ g(s)~ (s)ds, 

where x = ~(s), 0 < s < t, is the vector equation of some rectifiable curve in E d 

on which the parameter s is the length, and g runs through the set of measurable 

functions satisfying the condition Ig(s)[ _< ½ with 0 < s <_ 4. Moreover, let 

0 _< sl < s2 < "." < Sk _< t be points at which the derivative Tt(s) exists and is 

approximately continuous. Then the zonotope i.e. the vector sum of the k closed 

intervals respectively parallel to the vectors T'(sl) ,  ~2'(s2),..., ~2'(sk) is called a 

tangential zonotope of the zonoid Z (see [5]). 

LEMMA 4: Let Z C E d be a d-dimensional zonoid and P be a d-dimensional 

tangential zonotope of  it moreover, let 0 < l < d -  1. Then It(Z) _< It(P).  

According to a result of Baladze (see [5]) every d-dimensional zonoid Z C E d 

can be represented as the limit of some sequence of its d-dimensional tangential 

zonotopes. This and Lemma 3 and 4 then imply that if Z C E d is a d-dimensional 

zonoid and 0 < 1 < d -  1, then there exists a sequence P I , P 2 , . . .  , P r o , . . .  of its 

d-dimensional tangential zonotopes such that Ii(Z) -- limm--.+oo II(Pm)- Thus, 

Lemma 2 immediately yields that if d + 1 = 2 p, where p _> 2, then 

2 d 
Ix (Z) - -  lira I I (Pm)  < 2 2p-p- '  

m--*+oo - - -  d + 1" 

This completes the proof of the Theorem. | 
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